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Abstract  
Interactive walkthrough applications require detailed 3D models 
to give users a sense of immersion in an environment. 
Traditionally these models are built using computer-aided design 
tools to define geometry and material properties. But creating 
detailed models is time-consuming and it is also difficult to 
reproduce all geometric and photometric subtleties of real-world 
scenes. Computer vision attempts to alleviate this problem by 
extracting geometry and photogrammetry from images of the real-
world scenes. However, these models are still limited in the 
amount of detail they recover. 

Image-based rendering generates novel views by resampling a set 
of images of the environment without relying upon an explicit 
geometric model. Current such techniques limit the size and shape 
of the environment, and they do not lend themselves to 
walkthrough applications. In this paper, we define a 
parameterization of the 4D plenoptic function that is particularly 
suitable for interactive walkthroughs and define a method for its 
sampling and reconstructing. Our main contributions are: 1) a 
parameterization of the 4D plenoptic function that supports 
walkthrough applications in large, arbitrarily shaped 
environments; 2) a simple and fast capture process for complex 
environments; and 3) an automatic algorithm for reconstruction of 
the plenoptic function. 

Keywords: Virtual environments, plenoptic function, image-
based rendering, interactive walkthroughs, omnidirectional. 

1. INTRODUCTION 
Computer graphics applications, such as telepresence, virtual 
reality, and interactive walkthroughs require detailed 3D models 
of their environments. Traditionally such environments are 
created using computer-aided design systems to specify the 
geometry and material properties. Using a lighting model, the 
environment can then be rendered from any vantage point. 
However, conventional modeling techniques are generally very 
time consuming and still fall short of recreating the detailed 
geometry and subtle lighting effects found in most real-world 
scenes. Photographs of real-world scenes can help recover 
geometric [Debevec96, Faugeras98] and photometric properties 
[Yu98]. Computer vision attempts to create real-world models by 
automatically deriving the geometry and photogrammetry from 
images of real-world objects. These techniques are based on 
stereo matching, which is often noisy and has trouble reliably 
matching a sufficient number of features to create detailed models 
of complex scenes. 

 

 

 

 

In contrast, image-based rendering (IBR) creates novel views of 
an environment directly from a set of existing images. It does so 
by resampling the images to generate the new view, thus avoiding 
the need for an explicit geometric model. The 7D plenoptic 
function, as introduced by Adelson and Bergen [Adelson91], 
describes the light intensity passing through every viewpoint, in 
every direction, for all time, and for every wavelength. All 
existing IBR techniques generate lower-dimensional plenoptic 
functions from a set of images. 

In this paper, we present a method to reconstruct a 4D plenoptic 
function for an observer moving in open areas within a large, 
complex environment while restricting camera motion to a plane 
at eye-height (Figure 1). We acquire images of the environment 
by moving an omnidirectional video camera along several paths 
forming an irregular grid. We intersect the recorded image paths 
and stitch together simple, closed image loops. At run-time, we 
generate arbitrary views inside each image loop using the 
surrounding images. The observer can also move freely from one 
image loop to the next. Thus, if we tile an environment with 
image loops, we can capture and reconstruct an environment of 
arbitrary size and shape using an approximately constant-size 
memory footprint. The benefits of our approach are: 

Figure 1. Plenoptic Stitching. We capture omnidirectional images (upper-
left) along several paths through an environment (upper-right). Then, we 
automatically intersect the paths to create image loops. For a virtual 
observer (red view frustum) within any image loop, we interactively 
reconstruct views of the surrounding environment (lower image).  
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• Ease of capture: We capture complex environments in a 
manner of minutes. The environments illustrated in this paper 
were each captured in about 20 minutes. 

• Automated processing: All processing is automatic, except for 
the camera pose estimation that requires very minimal user 
intervention at initialization. 

• Scalability: Our method can scale to large environments. The 
reconstruction and interactive display algorithm require only a 
well-defined local subset of the captured data. 

• Support for arbitrarily shaped environments: Since the 
image loops may be of arbitrary shape, we can acquire 
arbitrarily shaped environments, which may include obstacles. 

Our experiments show that 1) our parameterization of the 4D 
plenoptic function is efficient for walkthrough applications; 2) as 
with other IBR methods, the computation time and memory 
requirements of each image loop is independent of model 
complexity; and 3) with suitable preprocessing, we can generate 
interactive walkthroughs for complex environments. 

The rest of the paper is organized as follows. We summarize 
related work in the following section. Section 3 presents an 
overview of our method. Sections 4 and 5 detail the capture 
process and the reconstruction, respectively. We present 
implementation details in Section 6, and results in Section 7. 
Finally, we conclude and present future work in the last section. 

2. BACKGROUND AND PREVIOUS WORK 
The goal of image-based rendering techniques is to reconstruct a 
continuous representation of the plenoptic function from a set of 
discrete image samples [Max95, McMillan95]. In practice, all 
techniques create a subset of the complete, 7D plenoptic function. 
First by restricting the problem to static scenes captured at 
discrete wavelengths (e.g. red, green, blue), we can reduce the 7D 
plenoptic function to 5D. 

McMillan and Bishop [McMillan95] use images augmented with 
depth values to reconstruct the 5D plenoptic function. They 
formulate an efficient image warping operation that uses a 
reference image to create images for a small nearby viewing area. 
For real-world environments, they compute depth by establishing 
feature correspondences between two cylindrical projections of 
the environment captured with a small baseline. Expanding to 
larger environments entails sampling many images from closely-
spaced known viewpoints. Other examples of 5D plenoptic 
functions can be found in [Chen93] and [Kang96]. 

For unobstructed spaces, we can further reduce the plenoptic 
function to 4D. Either the scene or the viewpoint is roughly 
constrained to a box. The Lightfield [Levoy96] and the 
Lumigraph [Gortler96] capture a large number of images, from 
known positions, and create a 4D database of light rays. To render 
the scene from a new viewpoint, they index recorded light rays.  

Concentric Mosaics [Shum99] capture an inside-looking-out 3D 
plenoptic function by mechanically constraining camera motion to 
a planar concentric circle. Subsequently, they reconstruct novel 
images from viewpoints restricted to within the circle and with 
horizontal-only parallax. Takahashi et al. [Takahashi00] create 
another 3D plenoptic function using omnidirectional images 
captured from a vehicle moving in a straight line, using a global-
positioning-system to obtain camera pose.  

Finally, if we fix the viewpoint and allow only the viewing 
direction and the zoom factor to change, we get a 2D plenoptic 
function. There are many examples in the literature of both 

cylindrical and spherical panoramas stitched together from 
multiple images [e.g., Chen95, Szeliski96, Szeliski97]. Another 
variation is to capture several video streams and show the 
observer the image captured from the location closest to the 
current virtual viewpoint [Taylor00]. In addition, there are many 
other IBR methods for special effects, such as multi-perspective 
images [Rademacher98]. 

None of the above techniques lend themselves to interactive 
walkthroughs of large, complex environments. In 2D and 3D 
plenoptic modeling the viewpoint is severely restricted. With the 
Lumigraph and Lightfield it would be possible to stitch together 
large models, but these would be restricted to regular areas and it 
would be very time-consuming. Finally, the full 5D plenoptic 
function could, in theory, reconstruct large, complex 
environments. However, the 5D representation requires the 
recovery of depth, which is difficult to do accurately and robustly 
for complex scenes. 

3. OVERVIEW OF PLENOPTIC STITCHING 
3.1 Walkthrough Parameterization 
Our goal is to derive a parameterization of the 4D plenoptic 
function suitable for walkthrough applications in unobstructed 
space. One possibility is to parameterize all potential light rays by 
their intersection with two perpendicular planes: an arbitrarily 
shaped horizontal plane that represents all viewer positions and a 
ruled surface, created by sweeping a vertical line around the 
perimeter of the open space that represents the viewing area. 

We parameterize light rays by their intersection with the observer 
plane (x, y) and with the ruled surface (u, v) creating a 4D 
plenoptic function (x, y, u, v), as shown in Figure 2. Since we 
assume that user gaze is kept approximately horizontal, we limit 
the vertical field-of-view and ignore viewing directions straight-
up and straight-down. In order to reconstruct a continuous 
representation of the 4D plenoptic function, we should ideally 
sample the entire open space densely. 

However, it is not practical to sample the observer plane densely. 
Thus, we sample the observer plane using an irregular grid of 
omnidirectional image sequences. (Each image sequence is a 3D 
plenoptic function.) The grid is adapted to the size, shape, and 
complexity of the environment. We intersect the paths of the 
recorded image sequences and form image loops in the observer 
plane (Figure 2). For each closed loop, we exploit the image loop 
coherence and warp pixels from the loop boundary to reconstruct 
views for arbitrary viewpoints inside the loop. The reconstruction 
also provides a smooth visual transition as the observer moves 
from one loop to the next. 

Our approach can be regarded as a generalization of stitching 
adjacent plenoptic functions. We relax the restrictions of the 

Figure 2. Walkthrough Parameterization. We parameterize light rays 
by their intersections (x, y) with the observer plane and (u, v) with the 
surrounding ruled surface.  

 



 

camera position to parallel planes (e.g. Lightfield [Levoy95]) or to 
concentric circles (e.g. Concentric Mosaics [Shum99]) by using 
an omnidirectional camera pose estimation algorithm and allow an 
arbitrarily-shaped open space to be captured. Each image loop is 
analogous to a Lightfield/Lumigraph or a Concentric Mosaic for 
an observer constrained to an eye-level plane. Thus we call our 
approach Plenoptic Stitching. 

3.2 Reconstruction  
Given a set of image loops, the goal of our reconstruction 
algorithm is to create novel planar views of the environment from 
arbitrary viewpoints inside a loop. We reconstruct the new view 
(Figure 3) by combining pixels from the omnidirectional images 
contained in the forward-looking view frustum (blue) with pixels 
in the omnidirectional images contained in the reverse-looking 
view frustum (red).  

We construct the new image column-by-column. In Figure 3, we 
highlight the reconstruction process for the middle column of a 
sample image (green). The line segment that corresponds to the 
viewing direction of the middle column intersects the surrounding 
image loop in at least two places. For non-convex loops, there 
might be more than two intersections. In such cases, we use the 
two intersections closest to the observer. 

Omnidirectional images captured at these intersection points 
sample the environment outside the loop in the same viewing 
direction but from two different centers-of-projection (COP). Our 
omnidirectional camera samples a column at a particular viewing 
direction using a radial line of pixels. Aside from vertical 
disocclusions, the environment features sampled by the radial line 
pair differ only by a radial displacement. If the viewpoint is co-
located with one of the COPs, then the new column is a planar re-

projection of that radial line. But, in order to reconstruct the 
column for a viewpoint anywhere along the viewing direction, we 
need to establish a mapping between the radial lines in the two 
omnidirectional images. We use this mapping to warp the two 
radial lines to a planar re-projection for the current viewpoint and 
blend them together.  

4. CAPTURE 
4.1 Omnidirectional Capture 
We built a camera capture system from off-the-shelf components. 
The camera is placed on a motorized cart together with a battery, 
computer, frame grabber, and fast disk system to store the 
captured images (Figure 4). The setup is completely standalone 
and radio-controlled, which makes the capture process very 
simple while also preventing the operator and cables from 
appearing in the omnidirectional images.  

Our walkthrough applications require a 360-degree horizontal 
field-of-view (FOV) and a large vertical FOV. There are several 
commercially available omnidirectional cameras, each with 
different advantages and disadvantages. Two examples are the 
multi-camera design by Nalwa [Nalwa96] and the paraboloidal 
catadioptric design by Nayar [Nayar97]. We choose the latter 
because it has a larger vertical FOV.  

This camera uses a convex paraboloidal mirror (i.e. the parabola's 
focal point is behind the mirror) with an orthographic projection. 
The full hemisphere of the FOV (360 by 180 degrees) in front of 
the mirror is reflected onto an image plane that is parallel to and 
lies in front of the mirror. Since the horizon is located at the 
mirror border, the vertical FOV spans 0 to -90 degrees. Each 
omnidirectional image has a single COP, yielding simple 
transformations to obtain planar re-projections.  

4.2 Camera Pose Estimation 
To compute camera pose, we developed a camera calibration 
scheme and a beacon-based pose estimation algorithm for 
omnidirectional cameras. The details can be found in [Aliaga01]. 
In two corners of the trackable region of an environment, we place 
a post equipped with small bright light bulbs and measure the 
distance between the posts. The calibrated camera is kept at a 
fixed height and approximately parallel to the ground plane. 
Before recording, the user initializes pose estimation by 
identifying the projections of the light bulbs in the first captured 
image. Then, as the camera moves, the algorithm automatically 
tracks the light bulbs and, using triangulation, derives the camera 
position (x, y) and orientation (ω) with an average pose error of 
0.5% in a typical room-size environment (e.g. 15 ft in diameter).  

Figure 3. Reconstruction. For a viewpoint inside an image loop 
(yellow), we draw several line segments through the viewpoint that 
intersect the surrounding loop. At each intersection, we extract from the 
omnidirectional images the radial line of pixels that correspond to the 
viewing direction. The final reconstructed image is created by warping 
and combining the extracted pixels. 

Figure 4. Omnidirectional Camera Setup. The motorized cart contains 
the camera, frame grabber, RAID disks, and battery.  



 

Since we know the camera is moving along a generally smooth 
path at an approximately constant speed and capture frame-rate, 
we compensate for noise in the pose estimation by fitting B-
splines to the camera positions along the recorded paths. Then, we 
compute local average translation speeds and re-project the 
camera positions onto the spline curve.  

4.3 Image Loops 
Once the images are captured over a grid in the environment, we 
create the image loops. A graph represents the grid with path 
intersections as vertices and path segments between two 
intersections as edges. We recursively traverse the graph and 
determine all image loops (or cycles). See Figure 5. 

To compute path intersections, we use oriented bounding box 
(OBB) trees [Gottschalk96]. A path consists of a sequence of 
images that are approximately evenly spaced along the path. We 
derive the OBB tree for each path by dividing it into in two 
segments, surrounding each segment with an oriented bounding 
box, and continuing the process until a small number of images 
remain in each node. To find the path intersections, we intersect 
path OBB trees top down and then find the intersecting line-
segments in the leaf nodes by enumeration.  

5. RECONSTRUCTION 
Recall that a new view from an arbitrary viewpoint inside an 
image loop consists of a column-by-column reconstruction of 
pixels from the omnidirectional images contained in the forward-
looking view frustum with pixels in the omnidirectional images in 
the reverse-looking view frustum. Assuming the viewing direction 
for a column intersects the COP of two omnidirectional images on 
opposite sides of the image loop, then that viewing direction 
identifies two radial lines in the images that represent the same 
viewing direction but from different COPs. 

Figure 6 shows a cross-plot of features in the two corresponding 
radial lines. The horizontal and vertical axes of the graph 
represent the parametric position of corresponding image features. 

We warp corresponding segments of each radial line to the 
column in the reconstructed image. 

We need to consider the geometry of our omnidirectional camera 
when warping the radial line segments. Figure 7 shows a profile 
of an image loop that depicts the paraboloidal mirrors at opposite 
ends of the loop, the image column to reconstruct, the viewpoint 
of a virtual observer, and an example feature outside the loop. For 
the omnidirectional images, we show the projected positions v1 
and v2 of the sample feature in the image column. We compute the 
image column position v0 of the feature for the virtual observer by 
using similar triangles. The following expression computes v0 
given v1, v2, and the parametric position s as a function of the 
distance d between the COPs of the omnidirectional images along 
the viewing direction: 
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Using a forward mapping, occlusion compatible ordering of the 
pixels of a radial line [McMillan95] eliminates the need to 
explicitly address visibility ordering. Since pixels from the image 
behind the viewpoint are generally stretched during the warp, we 
draw pixels using fixed size splats. In our case, splats are actually 
short line segments. To fill-in vertical disocclusions, we simply 
use longer than expected splats. This is equivalent to filling the 
gap with the last sample of the background object. We reduce the 
remaining reconstruction artifacts by filtering the final image 
using a 3x3 Gaussian convolution kernel. 

Generally, the viewing direction will not intersect the image loop 
exactly at the center of projection of an omnidirectional image. In 
this case, we extract two radial lines parallel to the view direction, 
blend them, and proceed with the reconstruction as previously 
described. 

Since there might be a large displacement between the two 
omnidirectional images on the opposite sides of the loop, it is 
difficult to reliably identify corresponding features in the radial 
lines from only two lines. Instead we rely upon the temporal 
coherence of the entire image loop to identify the required 
features. We choose an arbitrary omnidirectional image from the 
loop and use image processing techniques to identify a set of 
features (e.g. points, corners) [Shi94]. We then use the Kanade, 
Lucas, and Tomasi [Tomasi91] algorithm to track features from 
the original image around the loop, keeping only those features 
that successfully track all the way around and have similar 
beginning and ending image positions. 

To obtain feature positions for a specific radial line, we 
triangulate the tracked features in each image and use the 
intersection points between the triangulated edges and the radial 
line as the feature points for the mapping.  

Figure 5. Image Loops. Given several paths, we intersect them to create 
image loops.  Figure 7. Interpolating Feature Positions. For each reconstructed 

column, we compute the interpolated feature position v0 for a planar re-
projection of the environment. 

Figure 6. Mapping Function. We show a cross-plot of corresponding 
features sampled by a pair of radial lines. The horizontal and vertical 
axes of the graph represent the parametric position of the intersection 
between each radial line and each edge of the local feature 
triangulation.  



 

In a curved-mirror omnidirectional camera, straight lines project 
to curves. For a parabolic mirror, these curves are arcs of circles 
[Geyer98]. Thus, for each image, we compute a Delaunay 
triangulation of the tracked features and replace the straight 
(triangle) edges with arcs. Each arc has the property that it passes 
through the two vertices of the original edge and it intersects the 
mirror border at two points 180-degrees apart.  

To obtain an expression for the circle containing the arc, we start 
by transforming the two vertices of the original triangulation edge 
to a canonical space. In this space, the captured image has a radius 
equal to one and the vertices are rotated so that one of them lies 
along the x-axis. The vertices are now represented by (x0, 0) and 
(x1, y1). The following expressions compute the circle at (cx, cy) of 
radius r that passes through the two vertices and intersects the 
mirror border 180-degrees apart: 
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We intersect the arc-edge with a radial line by solving a quadratic 
equation. We represent the radial line by a ray from the origin 
through (rx, ry) and to the arc-edge on the border of the circle (cx, 
cy, r). The point of intersection is (trx, try) where t satisfies:  

0)()(2)( 222222 =−+++−+ rcctrcrctrr yxyyxxyx       (3). 

5.1 Optimization 
Under ideal conditions and ignoring vertical disocclusions, the 
surface samples visible in corresponding radial lines differ only by 
a radial displacement. As described earlier, the radial line 
mapping should be able to recover this displacement. In practice, 
however, both the feature tracking and the camera pose estimation 
introduce errors into this mapping. In addition we introduce 
aliasing, since we sample at a discrete set of viewing positions for 
a discrete set of viewing directions. We perform two types of 
optimization to compensate for these artifacts. 

5.1.1 Rotational Correction 
The first type of optimization accounts for the incorrect pairing of 
radial lines. This is due to camera pose error, in particular, 
rotation error that dominates any translation error.  

Figure 8 illustrates two omnidirectional images intersected by one 
viewing direction. If we move the viewpoint along the viewing 
direction from the COP of image A to that of image B, the 
(instantaneous) positive and negative epipoles lie on that line and 
at the border of the mirror. Moreover, epipolar geometry tells us 
that a feature moves along the arc of a circle that intersects the 
positive epipole, the negative epipole, and the feature itself. If 

image A and image B were rotationally aligned, corresponding 
features in the two images move along the same set of circles.  

When the images are not aligned, the error can be represented by 
the sum of the squared distances between the features and their 
expected trajectories. Expression (2) gives the trajectory for a 
feature in image A, using the feature and an epipole to define the 
arc-edge. The distance (in pixels) of a corresponding feature in 
image B from the perimeter of the computed circle is the error for 
that feature. To reduce these errors, we search for rotations that 
better align images in a least-squared sense. For each image, we 
obtain an array of rotation corrections, one for every image pair.  

For each reconstructed column, we add this rotation correction to 
the omnidirectional image’s orientation computed by the pose 
estimation. We assume the images of neighboring path positions 
have a similar rotation. Thus, after adding the rotation correction, 
we perform a smoothing operation over the resulting values. 

5.1.2 Column Correlation 
The second type of optimization compensates for inaccuracies in 
the recovered radial displacement between a radial line pair. In the 
absence of errors, the two warped columns computed from the 
mapping functions should be vertically aligned. However, feature 
drifting, lack of sufficient features, and inaccurate distance 
estimation between the images cause misalignment. 

To improve alignment, we scale one column (keeping the other 
unchanged) prior to blending the columns together. This is 
equivalent to changing the assumed distance between the COPs. 
To find the scale factor, we correlate low-pass filtered and 
downsampled versions of the radial lines [Faugeras93]. 

6. IMPLEMENTATION 
6.1 System Overview 
We developed custom C++ software on a 667 MHZ Pentium III 
PC and on a SGI Onyx2 with 4 250 MHz MIPS processors. The 
PC captures images to disk, computes camera pose, creates image 
loops, and tracks features. The SGI creates the column mappings, 
computes the optimizations, and interactively reconstructs images. 
The SGI software uses all four processors, with each processor 
reconstructing ¼ of the columns. 

The capture system uses a progressive-scan JVC KY-F70 
1360x1024 3-CCD color video camera and a Matrox frame 
grabber card. We control the recording software remotely using a 
wireless Ethernet connection (i.e. a WaveLan card) and a small 
laptop. The motors of the cart are controlled via a radio control 
unit (from a hobby store). We capture and transfer-to-disk frames 
at an average rate of 6.5 fps. The motorized cart moves at a speed 
of 0.2 m/sec, simulating a person walking at about one m/sec and 
recording video at roughly 30 Hz. 

6.2 Reconstruction Acceleration 
In order to obtain real-time performance, we divide the 
reconstruction into a preprocessing and a runtime phase (Figure 
9). In the preprocessing step, we track the features for the column 
mappings, optimize image rotation, and create a data structure to 
quickly access radial lines and their mapping functions required 
for the reconstruction. From each radial line in each 
omnidirectional image in an image loop, we generate potential 
viewing directions to the opposite side of the image loop and store 
the derived radial line mapping in the data structure.  

At runtime, using the observer position and viewing direction, we 
find the nearest preprocessed viewing directions and use these to 

Figure 8. Rotation Correction. The features of image A move along 
the arcs of the circles defined by the positive epipole, negative epipole, 
and the features themselves. On image B, the features should be on the 
same set of circles. The sum of the squared distances of their deviation 
from the expected trajectory is the error term used during the 
optimization. 



 

index the data structure containing the radial lines and mapping 
functions. In addition, we accelerate reconstruction by 
(optionally) using fewer mapping functions than columns in the 
image, effectively warping using lower-resolution information. 

6.3 Caches and Compression 
In order to maintain an approximately constant-size memory 
footprint and to reduce overall storage, we compress the source 
images and computed data structures. At run-time, three caches 
dynamically load the images and data. For the source images, we 
use a modified JPEG compression [Wallace91], and for the data 
structures we use Lempel-Ziv compression [Ziv77]. 

In order to efficiently use JPEG compression, we re-project the 
captured images to cylindrical projections using bilinear 
interpolation. In this projection the radial lines become columns. 
We divide each path into segments and each cylindrical projection 
into groups of columns. For each segment, we create a single 
bitstream. The JPEG comment field stores offsets to every group 
of columns of every image in the segment. Thus at runtime we can 
directly extract and decompress the desired column group. Two 
caches are used for decompression: one cache stores the 
compressed bitstreams already loaded from disk, the other stores 
decompressed groups of columns. Both caches use a least-
recently-used (LRU) replacement policy. 

In a similar fashion, we divide the remaining data structures of 
each path into segments and compress each segment using 

Lempel-Ziv coding. At run-time, we dynamically load and 
decompress each segment into a LRU cache. 

7. RESULTS AND OBSERVATIONS 
We have captured four environments using plenoptic stitching: 
Copier Room, Lobby, Multimedia, and Showcase. Table 1 lists 
several statistics about the acquisition of each environment, as 
well as the resulting total database sizes and preprocessing times. 
We do not include time to transport equipment to each location.  

As with other IBR methods, interactive reconstruction is 
accomplished in time proportional to image size. However, 
reconstruction time does vary slightly depending on the number of 
features per column. Reconstructions of 320x160 pixels and 
640x320 pixels take between 5 to 10 frames per second. Our pixel 
splat size is usually 1x4 pixels. We note that the capture time is 
very fast; 25 minutes is the maximum for these environments. 
Storage requirements are comparable to other IBR methods. 

Figure 10 shows the reconstruction quality for several viewpoints 
near the middle of the image loops in our sample environments, 
where proper reconstruction is most difficult. As a viewpoint 
approaches a captured path, reconstruction quality increases to 
that of the captured images. Figure 11 compares the quality of our 
reconstructions to the quality of our omnidirectional camera 
placed at the same observer viewpoint. The upper image in Figure 
11 shows a reconstructed image for a viewpoint near the middle 
of an image loop (worst case) in the Multimedia environment. The 
bottom image shows an image captured from approximately the 
same location and re-projected to a planar projection.  

We found that the optimizations much improve our 
reconstruction. We illustrate this in Figure 12, which shows one 
reconstructed image with and one without optimization. To 
further illustrate the significance of the optimizations, we 
recorded the average per-frame corrections for a path in each 
environment. Figure 13a illustrates the absolute values of the 
rotation corrections (in degrees), and Figure 13b the average 
linear-scale values. 

The remaining blurriness in our reconstructed images is a 
consequence of several factors. First, our omnidirectional camera 
captures more pixels near the horizon than towards the lower part 
of the vertical FOV, resulting in lower image quality in the lower 
parts of the reconstructed images. Second, our multiple 
resampling and interpolation operations yield artifacts. Third, our 
mapping functions are dependent on feature tracking which in 

Figure 9. Plenoptic Stitching Pipeline. 

Capture 
- Capture multiple image sequences 
- Compute camera pose and create image loops 
Preprocessing 
- Track features around each loop 
- For each radial line pair, compute rotation 
  corrections and mapping functions 
- Compress captured images 
Interactive Display 
- Use the rotation corrections and camera 
  pose information to extract radial line  
  pairs and mapping functions for observer 
  viewpoint 
- Use mapping functions to warp corresponding 
  radial lines from the omnidirectional  
  images to a planar re-projection 
- Compute column correlation optimization 
  and blend the pixels 

Figure 10. Example Reconstructions. We show images reconstructed for viewpoints near the middle of image loops (left column: Multimedia and 
Copier Room environments, middle column: Showcase environment, right column: Lobby environment). 



 

turn is dependent on the presence of good features in the 
environment. Lacking these features, blending of incorrectly 
warped pixels yields blurriness and ghosting.  

For a given image loop, we have control over some parameters 
that affect reconstruction quality. These parameters include the 
capture frame rate, the image resolution, and the ratio between the 
approximate diameter of the loop and the distances to the objects. 
For a given camera, image resolution is fixed. Increasing the 
capture frame rate improves the sampling of light rays along each 
path. While this is beneficial for viewpoints near a path, we are 
more concerned with the reconstruction quality for viewpoints 
near the middle of an image loop. Since objects at a distance 
move little in the image plane, it is easier to reconstruct the 
environment for a small loop sampling distant objects than for a 
larger loop sampling closer objects. One approach would be to 
determine, through experimentation, what loop sizes and object 
distances we require to achieve a desired image quality. 

8. CONCLUSIONS AND FUTURE WORK 
We have introduced plenoptic stitching, a novel approach to 
creating interactive walkthroughs of 3D virtual environments for 
an observer moving through unobstructed space in a plane. We 
introduce a novel parameterization of a 4D plenoptic function 
tailored to interactive walkthroughs. A fast and easy capture 
process samples the environment and then automatically 
reconstructs the 4D plenoptic function. Our algorithm captures 
environments of arbitrary size and shape without affecting the 
local reconstruction quality or storage. 

In order to maximize image quality, an interesting avenue of 
future work is to automatically guide the capture process so as to 
maintain a certain ratio between the loop size and the distance to 
the objects in the environment. For example, given a coarse model 
of an environment, record an optimal path grid [Roberts97].  

In order to capture more compelling and multi-room 
environments, auditoriums, and large exterior spaces, we must 
extend the camera pose estimation. Our current algorithm limits 

us to environments of approximately 120 square feet. We are 
pursuing extensions to our camera pose estimation algorithm for 
multi-room environments. Other possible camera pose estimation 
techniques include the UNC Ceiling Tracker [Ward92].  

We would like to improve the quality of omnidirectional capture. 
In particular, we are interested in multiple-camera configurations 
that acquire higher resolution images and nearly full spherical 
projections. For example, one method to increase the FOV is to 
place two of our hemispherical cameras back-to-back. 

Finally, we can exploit the mapping functions to improve 
compression. Each pair of radial lines exhibits a large amount of 
coherence. Similar to motion estimation in MPEG compression 
[LeGall91], we can use the mapping function to predict one radial 
line from the other, in addition to exploiting the image-to-image 
coherence around the loop. 
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Figure 13. Average Corrections Computed by the Optimizations. For 
all environments, we traverse a path and show the average per frame 
absolute value of the rotation corrections (in degrees) and the average 
per frame column scale value.  
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Figure 11. Reconstruction Comparison. The top image is reconstructed 
by our method for a viewpoint near the middle of an image loop. The 
bottom image is a planar re-projection of an omnidirectional image 
captured (approximately) from the same viewpoint. 

Figure 12. Optimizations. The left image pair shows a reconstructed 
view of the Copier Room environment with optimizations enabled. The 
right image pair shows the same view with optimizations disabled. 
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Name Setup 
Time 
(mins) 

Capture 
Time 
(mins) 

No. of 
Paths/ 
Loops 

No. of 
Images 

Total 
Paths 
(meters) 

Raw 
Images 
(MB) 

Raw 
Data 
Structs 
(MB) 

Compressed 
Images 
(MB) 

Compressed 
Data 
Structures 
(MB) 

Total 
Data 
(MB) 

Prep. 
Time 
(hours) 

Copier Rm 12 8 4/1 498 15 1494 159 55 59 114 1 
Lobby 5 20 7/5 1304 41 3912 586 110 217 327 5 
Multimedia 5 15 7/5 1025 32 3075 425 112 158 270 5 
Showcase 10 25 8/9 1600 49 4676 528 169 196 365 6 

Table 1. Environment Statistics. 




