

Plenoptic Stitching: A Scalable Method for
Reconstructing 3D Interactive Walkthroughs

 Daniel G. Aliaga Ingrid Carlbom
aliaga@bell-labs.com carlbom@bell-labs.com

Lucent Technologies Bell Laboratories

Abstract
Interactive walkthrough applications require detailed 3D models
to give users a sense of immersion in an environment.
Traditionally these models are built using computer-aided design
tools to define geometry and material properties. But creating
detailed models is time-consuming and it is also difficult to
reproduce all geometric and photometric subtleties of real-world
scenes. Computer vision attempts to alleviate this problem by
extracting geometry and photogrammetry from images of the real-
world scenes. However, these models are still limited in the
amount of detail they recover.

Image-based rendering generates novel views by resampling a set
of images of the environment without relying upon an explicit
geometric model. Current such techniques limit the size and shape
of the environment, and they do not lend themselves to
walkthrough applications. In this paper, we define a
parameterization of the 4D plenoptic function that is particularly
suitable for interactive walkthroughs and define a method for its
sampling and reconstructing. Our main contributions are: 1) a
parameterization of the 4D plenoptic function that supports
walkthrough applications in large, arbitrarily shaped
environments; 2) a simple and fast capture process for complex
environments; and 3) an automatic algorithm for reconstruction of
the plenoptic function.

Keywords: Virtual environments, plenoptic function, image-
based rendering, interactive walkthroughs, omnidirectional.

1. INTRODUCTION
Computer graphics applications, such as telepresence, virtual
reality, and interactive walkthroughs require detailed 3D models
of their environments. Traditionally such environments are
created using computer-aided design systems to specify the
geometry and material properties. Using a lighting model, the
environment can then be rendered from any vantage point.
However, conventional modeling techniques are generally very
time consuming and still fall short of recreating the detailed
geometry and subtle lighting effects found in most real-world
scenes. Photographs of real-world scenes can help recover
geometric [Debevec96, Faugeras98] and photometric properties
[Yu98]. Computer vision attempts to create real-world models by
automatically deriving the geometry and photogrammetry from
images of real-world objects. These techniques are based on
stereo matching, which is often noisy and has trouble reliably
matching a sufficient number of features to create detailed models
of complex scenes.

In contrast, image-based rendering (IBR) creates novel views of
an environment directly from a set of existing images. It does so
by resampling the images to generate the new view, thus avoiding
the need for an explicit geometric model. The 7D plenoptic
function, as introduced by Adelson and Bergen [Adelson91],
describes the light intensity passing through every viewpoint, in
every direction, for all time, and for every wavelength. All
existing IBR techniques generate lower-dimensional plenoptic
functions from a set of images.

In this paper, we present a method to reconstruct a 4D plenoptic
function for an observer moving in open areas within a large,
complex environment while restricting camera motion to a plane
at eye-height (Figure 1). We acquire images of the environment
by moving an omnidirectional video camera along several paths
forming an irregular grid. We intersect the recorded image paths
and stitch together simple, closed image loops. At run-time, we
generate arbitrary views inside each image loop using the
surrounding images. The observer can also move freely from one
image loop to the next. Thus, if we tile an environment with
image loops, we can capture and reconstruct an environment of
arbitrary size and shape using an approximately constant-size
memory footprint. The benefits of our approach are:

Figure 1. Plenoptic Stitching. We capture omnidirectional images (upper-
left) along several paths through an environment (upper-right). Then, we
automatically intersect the paths to create image loops. For a virtual
observer (red view frustum) within any image loop, we interactively
reconstruct views of the surrounding environment (lower image).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

• Ease of capture: We capture complex environments in a
manner of minutes. The environments illustrated in this paper
were each captured in about 20 minutes.

• Automated processing: All processing is automatic, except for
the camera pose estimation that requires very minimal user
intervention at initialization.

• Scalability: Our method can scale to large environments. The
reconstruction and interactive display algorithm require only a
well-defined local subset of the captured data.

• Support for arbitrarily shaped environments: Since the
image loops may be of arbitrary shape, we can acquire
arbitrarily shaped environments, which may include obstacles.

Our experiments show that 1) our parameterization of the 4D
plenoptic function is efficient for walkthrough applications; 2) as
with other IBR methods, the computation time and memory
requirements of each image loop is independent of model
complexity; and 3) with suitable preprocessing, we can generate
interactive walkthroughs for complex environments.

The rest of the paper is organized as follows. We summarize
related work in the following section. Section 3 presents an
overview of our method. Sections 4 and 5 detail the capture
process and the reconstruction, respectively. We present
implementation details in Section 6, and results in Section 7.
Finally, we conclude and present future work in the last section.

2. BACKGROUND AND PREVIOUS WORK
The goal of image-based rendering techniques is to reconstruct a
continuous representation of the plenoptic function from a set of
discrete image samples [Max95, McMillan95]. In practice, all
techniques create a subset of the complete, 7D plenoptic function.
First by restricting the problem to static scenes captured at
discrete wavelengths (e.g. red, green, blue), we can reduce the 7D
plenoptic function to 5D.

McMillan and Bishop [McMillan95] use images augmented with
depth values to reconstruct the 5D plenoptic function. They
formulate an efficient image warping operation that uses a
reference image to create images for a small nearby viewing area.
For real-world environments, they compute depth by establishing
feature correspondences between two cylindrical projections of
the environment captured with a small baseline. Expanding to
larger environments entails sampling many images from closely-
spaced known viewpoints. Other examples of 5D plenoptic
functions can be found in [Chen93] and [Kang96].

For unobstructed spaces, we can further reduce the plenoptic
function to 4D. Either the scene or the viewpoint is roughly
constrained to a box. The Lightfield [Levoy96] and the
Lumigraph [Gortler96] capture a large number of images, from
known positions, and create a 4D database of light rays. To render
the scene from a new viewpoint, they index recorded light rays.

Concentric Mosaics [Shum99] capture an inside-looking-out 3D
plenoptic function by mechanically constraining camera motion to
a planar concentric circle. Subsequently, they reconstruct novel
images from viewpoints restricted to within the circle and with
horizontal-only parallax. Takahashi et al. [Takahashi00] create
another 3D plenoptic function using omnidirectional images
captured from a vehicle moving in a straight line, using a global-
positioning-system to obtain camera pose.

Finally, if we fix the viewpoint and allow only the viewing
direction and the zoom factor to change, we get a 2D plenoptic
function. There are many examples in the literature of both

cylindrical and spherical panoramas stitched together from
multiple images [e.g., Chen95, Szeliski96, Szeliski97]. Another
variation is to capture several video streams and show the
observer the image captured from the location closest to the
current virtual viewpoint [Taylor00]. In addition, there are many
other IBR methods for special effects, such as multi-perspective
images [Rademacher98].

None of the above techniques lend themselves to interactive
walkthroughs of large, complex environments. In 2D and 3D
plenoptic modeling the viewpoint is severely restricted. With the
Lumigraph and Lightfield it would be possible to stitch together
large models, but these would be restricted to regular areas and it
would be very time-consuming. Finally, the full 5D plenoptic
function could, in theory, reconstruct large, complex
environments. However, the 5D representation requires the
recovery of depth, which is difficult to do accurately and robustly
for complex scenes.

3. OVERVIEW OF PLENOPTIC STITCHING
3.1 Walkthrough Parameterization
Our goal is to derive a parameterization of the 4D plenoptic
function suitable for walkthrough applications in unobstructed
space. One possibility is to parameterize all potential light rays by
their intersection with two perpendicular planes: an arbitrarily
shaped horizontal plane that represents all viewer positions and a
ruled surface, created by sweeping a vertical line around the
perimeter of the open space that represents the viewing area.

We parameterize light rays by their intersection with the observer
plane (x, y) and with the ruled surface (u, v) creating a 4D
plenoptic function (x, y, u, v), as shown in Figure 2. Since we
assume that user gaze is kept approximately horizontal, we limit
the vertical field-of-view and ignore viewing directions straight-
up and straight-down. In order to reconstruct a continuous
representation of the 4D plenoptic function, we should ideally
sample the entire open space densely.

However, it is not practical to sample the observer plane densely.
Thus, we sample the observer plane using an irregular grid of
omnidirectional image sequences. (Each image sequence is a 3D
plenoptic function.) The grid is adapted to the size, shape, and
complexity of the environment. We intersect the paths of the
recorded image sequences and form image loops in the observer
plane (Figure 2). For each closed loop, we exploit the image loop
coherence and warp pixels from the loop boundary to reconstruct
views for arbitrary viewpoints inside the loop. The reconstruction
also provides a smooth visual transition as the observer moves
from one loop to the next.

Our approach can be regarded as a generalization of stitching
adjacent plenoptic functions. We relax the restrictions of the

Figure 2. Walkthrough Parameterization. We parameterize light rays
by their intersections (x, y) with the observer plane and (u, v) with the
surrounding ruled surface.

camera position to parallel planes (e.g. Lightfield [Levoy95]) or to
concentric circles (e.g. Concentric Mosaics [Shum99]) by using
an omnidirectional camera pose estimation algorithm and allow an
arbitrarily-shaped open space to be captured. Each image loop is
analogous to a Lightfield/Lumigraph or a Concentric Mosaic for
an observer constrained to an eye-level plane. Thus we call our
approach Plenoptic Stitching.

3.2 Reconstruction
Given a set of image loops, the goal of our reconstruction
algorithm is to create novel planar views of the environment from
arbitrary viewpoints inside a loop. We reconstruct the new view
(Figure 3) by combining pixels from the omnidirectional images
contained in the forward-looking view frustum (blue) with pixels
in the omnidirectional images contained in the reverse-looking
view frustum (red).

We construct the new image column-by-column. In Figure 3, we
highlight the reconstruction process for the middle column of a
sample image (green). The line segment that corresponds to the
viewing direction of the middle column intersects the surrounding
image loop in at least two places. For non-convex loops, there
might be more than two intersections. In such cases, we use the
two intersections closest to the observer.

Omnidirectional images captured at these intersection points
sample the environment outside the loop in the same viewing
direction but from two different centers-of-projection (COP). Our
omnidirectional camera samples a column at a particular viewing
direction using a radial line of pixels. Aside from vertical
disocclusions, the environment features sampled by the radial line
pair differ only by a radial displacement. If the viewpoint is co-
located with one of the COPs, then the new column is a planar re-

projection of that radial line. But, in order to reconstruct the
column for a viewpoint anywhere along the viewing direction, we
need to establish a mapping between the radial lines in the two
omnidirectional images. We use this mapping to warp the two
radial lines to a planar re-projection for the current viewpoint and
blend them together.

4. CAPTURE
4.1 Omnidirectional Capture
We built a camera capture system from off-the-shelf components.
The camera is placed on a motorized cart together with a battery,
computer, frame grabber, and fast disk system to store the
captured images (Figure 4). The setup is completely standalone
and radio-controlled, which makes the capture process very
simple while also preventing the operator and cables from
appearing in the omnidirectional images.

Our walkthrough applications require a 360-degree horizontal
field-of-view (FOV) and a large vertical FOV. There are several
commercially available omnidirectional cameras, each with
different advantages and disadvantages. Two examples are the
multi-camera design by Nalwa [Nalwa96] and the paraboloidal
catadioptric design by Nayar [Nayar97]. We choose the latter
because it has a larger vertical FOV.

This camera uses a convex paraboloidal mirror (i.e. the parabola's
focal point is behind the mirror) with an orthographic projection.
The full hemisphere of the FOV (360 by 180 degrees) in front of
the mirror is reflected onto an image plane that is parallel to and
lies in front of the mirror. Since the horizon is located at the
mirror border, the vertical FOV spans 0 to -90 degrees. Each
omnidirectional image has a single COP, yielding simple
transformations to obtain planar re-projections.

4.2 Camera Pose Estimation
To compute camera pose, we developed a camera calibration
scheme and a beacon-based pose estimation algorithm for
omnidirectional cameras. The details can be found in [Aliaga01].
In two corners of the trackable region of an environment, we place
a post equipped with small bright light bulbs and measure the
distance between the posts. The calibrated camera is kept at a
fixed height and approximately parallel to the ground plane.
Before recording, the user initializes pose estimation by
identifying the projections of the light bulbs in the first captured
image. Then, as the camera moves, the algorithm automatically
tracks the light bulbs and, using triangulation, derives the camera
position (x, y) and orientation (ω) with an average pose error of
0.5% in a typical room-size environment (e.g. 15 ft in diameter).

Figure 3. Reconstruction. For a viewpoint inside an image loop
(yellow), we draw several line segments through the viewpoint that
intersect the surrounding loop. At each intersection, we extract from the
omnidirectional images the radial line of pixels that correspond to the
viewing direction. The final reconstructed image is created by warping
and combining the extracted pixels.

Figure 4. Omnidirectional Camera Setup. The motorized cart contains
the camera, frame grabber, RAID disks, and battery.

Since we know the camera is moving along a generally smooth
path at an approximately constant speed and capture frame-rate,
we compensate for noise in the pose estimation by fitting B-
splines to the camera positions along the recorded paths. Then, we
compute local average translation speeds and re-project the
camera positions onto the spline curve.

4.3 Image Loops
Once the images are captured over a grid in the environment, we
create the image loops. A graph represents the grid with path
intersections as vertices and path segments between two
intersections as edges. We recursively traverse the graph and
determine all image loops (or cycles). See Figure 5.

To compute path intersections, we use oriented bounding box
(OBB) trees [Gottschalk96]. A path consists of a sequence of
images that are approximately evenly spaced along the path. We
derive the OBB tree for each path by dividing it into in two
segments, surrounding each segment with an oriented bounding
box, and continuing the process until a small number of images
remain in each node. To find the path intersections, we intersect
path OBB trees top down and then find the intersecting line-
segments in the leaf nodes by enumeration.

5. RECONSTRUCTION
Recall that a new view from an arbitrary viewpoint inside an
image loop consists of a column-by-column reconstruction of
pixels from the omnidirectional images contained in the forward-
looking view frustum with pixels in the omnidirectional images in
the reverse-looking view frustum. Assuming the viewing direction
for a column intersects the COP of two omnidirectional images on
opposite sides of the image loop, then that viewing direction
identifies two radial lines in the images that represent the same
viewing direction but from different COPs.

Figure 6 shows a cross-plot of features in the two corresponding
radial lines. The horizontal and vertical axes of the graph
represent the parametric position of corresponding image features.

We warp corresponding segments of each radial line to the
column in the reconstructed image.

We need to consider the geometry of our omnidirectional camera
when warping the radial line segments. Figure 7 shows a profile
of an image loop that depicts the paraboloidal mirrors at opposite
ends of the loop, the image column to reconstruct, the viewpoint
of a virtual observer, and an example feature outside the loop. For
the omnidirectional images, we show the projected positions v1
and v2 of the sample feature in the image column. We compute the
image column position v0 of the feature for the virtual observer by
using similar triangles. The following expression computes v0
given v1, v2, and the parametric position s as a function of the
distance d between the COPs of the omnidirectional images along
the viewing direction:

)1)1((
1

2
20 +−=

v
v

svv (1).

Using a forward mapping, occlusion compatible ordering of the
pixels of a radial line [McMillan95] eliminates the need to
explicitly address visibility ordering. Since pixels from the image
behind the viewpoint are generally stretched during the warp, we
draw pixels using fixed size splats. In our case, splats are actually
short line segments. To fill-in vertical disocclusions, we simply
use longer than expected splats. This is equivalent to filling the
gap with the last sample of the background object. We reduce the
remaining reconstruction artifacts by filtering the final image
using a 3x3 Gaussian convolution kernel.

Generally, the viewing direction will not intersect the image loop
exactly at the center of projection of an omnidirectional image. In
this case, we extract two radial lines parallel to the view direction,
blend them, and proceed with the reconstruction as previously
described.

Since there might be a large displacement between the two
omnidirectional images on the opposite sides of the loop, it is
difficult to reliably identify corresponding features in the radial
lines from only two lines. Instead we rely upon the temporal
coherence of the entire image loop to identify the required
features. We choose an arbitrary omnidirectional image from the
loop and use image processing techniques to identify a set of
features (e.g. points, corners) [Shi94]. We then use the Kanade,
Lucas, and Tomasi [Tomasi91] algorithm to track features from
the original image around the loop, keeping only those features
that successfully track all the way around and have similar
beginning and ending image positions.

To obtain feature positions for a specific radial line, we
triangulate the tracked features in each image and use the
intersection points between the triangulated edges and the radial
line as the feature points for the mapping.

Figure 5. Image Loops. Given several paths, we intersect them to create
image loops. Figure 7. Interpolating Feature Positions. For each reconstructed

column, we compute the interpolated feature position v0 for a planar re-
projection of the environment.

Figure 6. Mapping Function. We show a cross-plot of corresponding
features sampled by a pair of radial lines. The horizontal and vertical
axes of the graph represent the parametric position of the intersection
between each radial line and each edge of the local feature
triangulation.

In a curved-mirror omnidirectional camera, straight lines project
to curves. For a parabolic mirror, these curves are arcs of circles
[Geyer98]. Thus, for each image, we compute a Delaunay
triangulation of the tracked features and replace the straight
(triangle) edges with arcs. Each arc has the property that it passes
through the two vertices of the original edge and it intersects the
mirror border at two points 180-degrees apart.

To obtain an expression for the circle containing the arc, we start
by transforming the two vertices of the original triangulation edge
to a canonical space. In this space, the captured image has a radius
equal to one and the vertices are rotated so that one of them lies
along the x-axis. The vertices are now represented by (x0, 0) and
(x1, y1). The following expressions compute the circle at (cx, cy) of
radius r that passes through the two vertices and intersects the
mirror border 180-degrees apart:

22

10

1
2
0

2
1

2
1001

0

2
0 1

2
)(

2
1

yxyx ccr
yx

xxyxxxx
c

x
x

c ++=
−++−

=
−

= (2).

We intersect the arc-edge with a radial line by solving a quadratic
equation. We represent the radial line by a ray from the origin
through (rx, ry) and to the arc-edge on the border of the circle (cx,
cy, r). The point of intersection is (trx, try) where t satisfies:

0)()(2)(222222 =−+++−+ rcctrcrctrr yxyyxxyx (3).

5.1 Optimization
Under ideal conditions and ignoring vertical disocclusions, the
surface samples visible in corresponding radial lines differ only by
a radial displacement. As described earlier, the radial line
mapping should be able to recover this displacement. In practice,
however, both the feature tracking and the camera pose estimation
introduce errors into this mapping. In addition we introduce
aliasing, since we sample at a discrete set of viewing positions for
a discrete set of viewing directions. We perform two types of
optimization to compensate for these artifacts.

5.1.1 Rotational Correction
The first type of optimization accounts for the incorrect pairing of
radial lines. This is due to camera pose error, in particular,
rotation error that dominates any translation error.

Figure 8 illustrates two omnidirectional images intersected by one
viewing direction. If we move the viewpoint along the viewing
direction from the COP of image A to that of image B, the
(instantaneous) positive and negative epipoles lie on that line and
at the border of the mirror. Moreover, epipolar geometry tells us
that a feature moves along the arc of a circle that intersects the
positive epipole, the negative epipole, and the feature itself. If

image A and image B were rotationally aligned, corresponding
features in the two images move along the same set of circles.

When the images are not aligned, the error can be represented by
the sum of the squared distances between the features and their
expected trajectories. Expression (2) gives the trajectory for a
feature in image A, using the feature and an epipole to define the
arc-edge. The distance (in pixels) of a corresponding feature in
image B from the perimeter of the computed circle is the error for
that feature. To reduce these errors, we search for rotations that
better align images in a least-squared sense. For each image, we
obtain an array of rotation corrections, one for every image pair.

For each reconstructed column, we add this rotation correction to
the omnidirectional image’s orientation computed by the pose
estimation. We assume the images of neighboring path positions
have a similar rotation. Thus, after adding the rotation correction,
we perform a smoothing operation over the resulting values.

5.1.2 Column Correlation
The second type of optimization compensates for inaccuracies in
the recovered radial displacement between a radial line pair. In the
absence of errors, the two warped columns computed from the
mapping functions should be vertically aligned. However, feature
drifting, lack of sufficient features, and inaccurate distance
estimation between the images cause misalignment.

To improve alignment, we scale one column (keeping the other
unchanged) prior to blending the columns together. This is
equivalent to changing the assumed distance between the COPs.
To find the scale factor, we correlate low-pass filtered and
downsampled versions of the radial lines [Faugeras93].

6. IMPLEMENTATION
6.1 System Overview
We developed custom C++ software on a 667 MHZ Pentium III
PC and on a SGI Onyx2 with 4 250 MHz MIPS processors. The
PC captures images to disk, computes camera pose, creates image
loops, and tracks features. The SGI creates the column mappings,
computes the optimizations, and interactively reconstructs images.
The SGI software uses all four processors, with each processor
reconstructing ¼ of the columns.

The capture system uses a progressive-scan JVC KY-F70
1360x1024 3-CCD color video camera and a Matrox frame
grabber card. We control the recording software remotely using a
wireless Ethernet connection (i.e. a WaveLan card) and a small
laptop. The motors of the cart are controlled via a radio control
unit (from a hobby store). We capture and transfer-to-disk frames
at an average rate of 6.5 fps. The motorized cart moves at a speed
of 0.2 m/sec, simulating a person walking at about one m/sec and
recording video at roughly 30 Hz.

6.2 Reconstruction Acceleration
In order to obtain real-time performance, we divide the
reconstruction into a preprocessing and a runtime phase (Figure
9). In the preprocessing step, we track the features for the column
mappings, optimize image rotation, and create a data structure to
quickly access radial lines and their mapping functions required
for the reconstruction. From each radial line in each
omnidirectional image in an image loop, we generate potential
viewing directions to the opposite side of the image loop and store
the derived radial line mapping in the data structure.

At runtime, using the observer position and viewing direction, we
find the nearest preprocessed viewing directions and use these to

Figure 8. Rotation Correction. The features of image A move along
the arcs of the circles defined by the positive epipole, negative epipole,
and the features themselves. On image B, the features should be on the
same set of circles. The sum of the squared distances of their deviation
from the expected trajectory is the error term used during the
optimization.

index the data structure containing the radial lines and mapping
functions. In addition, we accelerate reconstruction by
(optionally) using fewer mapping functions than columns in the
image, effectively warping using lower-resolution information.

6.3 Caches and Compression
In order to maintain an approximately constant-size memory
footprint and to reduce overall storage, we compress the source
images and computed data structures. At run-time, three caches
dynamically load the images and data. For the source images, we
use a modified JPEG compression [Wallace91], and for the data
structures we use Lempel-Ziv compression [Ziv77].

In order to efficiently use JPEG compression, we re-project the
captured images to cylindrical projections using bilinear
interpolation. In this projection the radial lines become columns.
We divide each path into segments and each cylindrical projection
into groups of columns. For each segment, we create a single
bitstream. The JPEG comment field stores offsets to every group
of columns of every image in the segment. Thus at runtime we can
directly extract and decompress the desired column group. Two
caches are used for decompression: one cache stores the
compressed bitstreams already loaded from disk, the other stores
decompressed groups of columns. Both caches use a least-
recently-used (LRU) replacement policy.

In a similar fashion, we divide the remaining data structures of
each path into segments and compress each segment using

Lempel-Ziv coding. At run-time, we dynamically load and
decompress each segment into a LRU cache.

7. RESULTS AND OBSERVATIONS
We have captured four environments using plenoptic stitching:
Copier Room, Lobby, Multimedia, and Showcase. Table 1 lists
several statistics about the acquisition of each environment, as
well as the resulting total database sizes and preprocessing times.
We do not include time to transport equipment to each location.

As with other IBR methods, interactive reconstruction is
accomplished in time proportional to image size. However,
reconstruction time does vary slightly depending on the number of
features per column. Reconstructions of 320x160 pixels and
640x320 pixels take between 5 to 10 frames per second. Our pixel
splat size is usually 1x4 pixels. We note that the capture time is
very fast; 25 minutes is the maximum for these environments.
Storage requirements are comparable to other IBR methods.

Figure 10 shows the reconstruction quality for several viewpoints
near the middle of the image loops in our sample environments,
where proper reconstruction is most difficult. As a viewpoint
approaches a captured path, reconstruction quality increases to
that of the captured images. Figure 11 compares the quality of our
reconstructions to the quality of our omnidirectional camera
placed at the same observer viewpoint. The upper image in Figure
11 shows a reconstructed image for a viewpoint near the middle
of an image loop (worst case) in the Multimedia environment. The
bottom image shows an image captured from approximately the
same location and re-projected to a planar projection.

We found that the optimizations much improve our
reconstruction. We illustrate this in Figure 12, which shows one
reconstructed image with and one without optimization. To
further illustrate the significance of the optimizations, we
recorded the average per-frame corrections for a path in each
environment. Figure 13a illustrates the absolute values of the
rotation corrections (in degrees), and Figure 13b the average
linear-scale values.

The remaining blurriness in our reconstructed images is a
consequence of several factors. First, our omnidirectional camera
captures more pixels near the horizon than towards the lower part
of the vertical FOV, resulting in lower image quality in the lower
parts of the reconstructed images. Second, our multiple
resampling and interpolation operations yield artifacts. Third, our
mapping functions are dependent on feature tracking which in

Figure 9. Plenoptic Stitching Pipeline.

Capture
- Capture multiple image sequences
- Compute camera pose and create image loops
Preprocessing
- Track features around each loop
- For each radial line pair, compute rotation
 corrections and mapping functions
- Compress captured images
Interactive Display
- Use the rotation corrections and camera
 pose information to extract radial line
 pairs and mapping functions for observer
 viewpoint
- Use mapping functions to warp corresponding
 radial lines from the omnidirectional
 images to a planar re-projection
- Compute column correlation optimization
 and blend the pixels

Figure 10. Example Reconstructions. We show images reconstructed for viewpoints near the middle of image loops (left column: Multimedia and
Copier Room environments, middle column: Showcase environment, right column: Lobby environment).

turn is dependent on the presence of good features in the
environment. Lacking these features, blending of incorrectly
warped pixels yields blurriness and ghosting.

For a given image loop, we have control over some parameters
that affect reconstruction quality. These parameters include the
capture frame rate, the image resolution, and the ratio between the
approximate diameter of the loop and the distances to the objects.
For a given camera, image resolution is fixed. Increasing the
capture frame rate improves the sampling of light rays along each
path. While this is beneficial for viewpoints near a path, we are
more concerned with the reconstruction quality for viewpoints
near the middle of an image loop. Since objects at a distance
move little in the image plane, it is easier to reconstruct the
environment for a small loop sampling distant objects than for a
larger loop sampling closer objects. One approach would be to
determine, through experimentation, what loop sizes and object
distances we require to achieve a desired image quality.

8. CONCLUSIONS AND FUTURE WORK
We have introduced plenoptic stitching, a novel approach to
creating interactive walkthroughs of 3D virtual environments for
an observer moving through unobstructed space in a plane. We
introduce a novel parameterization of a 4D plenoptic function
tailored to interactive walkthroughs. A fast and easy capture
process samples the environment and then automatically
reconstructs the 4D plenoptic function. Our algorithm captures
environments of arbitrary size and shape without affecting the
local reconstruction quality or storage.

In order to maximize image quality, an interesting avenue of
future work is to automatically guide the capture process so as to
maintain a certain ratio between the loop size and the distance to
the objects in the environment. For example, given a coarse model
of an environment, record an optimal path grid [Roberts97].

In order to capture more compelling and multi-room
environments, auditoriums, and large exterior spaces, we must
extend the camera pose estimation. Our current algorithm limits

us to environments of approximately 120 square feet. We are
pursuing extensions to our camera pose estimation algorithm for
multi-room environments. Other possible camera pose estimation
techniques include the UNC Ceiling Tracker [Ward92].

We would like to improve the quality of omnidirectional capture.
In particular, we are interested in multiple-camera configurations
that acquire higher resolution images and nearly full spherical
projections. For example, one method to increase the FOV is to
place two of our hemispherical cameras back-to-back.

Finally, we can exploit the mapping functions to improve
compression. Each pair of radial lines exhibits a large amount of
coherence. Similar to motion estimation in MPEG compression
[LeGall91], we can use the mapping function to predict one radial
line from the other, in addition to exploiting the image-to-image
coherence around the loop.

Acknowledgments
We thank Sid Ahuja, Multimedia Communications Research VP
at Bell Labs, for supporting this research. In addition, we thank
Bob Holt, Gopal Pingali, and Nicolas Tsingos for their technical
help; Agata Opalach for her assistance with the diagrams; and
Tom Funkhouser, Steve Fortune, and Bob Kubli for their advice.

A v e r a g e A b s o l u t e R o t a t i o n C o r r e c t i o n

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1. 2

0 5 0 10 0 15 0 2 0 0 2 5 0 3 0 0 3 5 0

Fr a m e

M ult imedia

Lobby

Copier Room

Showcase

Figure 13. Average Corrections Computed by the Optimizations. For
all environments, we traverse a path and show the average per frame
absolute value of the rotation corrections (in degrees) and the average
per frame column scale value.

A v e r a g e C o l u m n S c a l i n g

1

1. 0 2

1. 0 4

1. 0 6

1. 0 8

1. 1

0 5 0 10 0 15 0 2 0 0 2 5 0 3 0 0 3 5 0

F r a m e

M ult imedia

Lobby

Copier Room

Showcase

Figure 11. Reconstruction Comparison. The top image is reconstructed
by our method for a viewpoint near the middle of an image loop. The
bottom image is a planar re-projection of an omnidirectional image
captured (approximately) from the same viewpoint.

Figure 12. Optimizations. The left image pair shows a reconstructed
view of the Copier Room environment with optimizations enabled. The
right image pair shows the same view with optimizations disabled.

References
[Adelson91] Adelson E.H. and Bergen J., In “The Plenoptic Function and

the Elements of Early Vision”, In Computational Models of Visual
Processing, MIT Press, Cambridge, MA, 3-20, 1991.

[Aliaga01] Aliaga D., “Accurate Catadioptric Calibration for Real-time
Pose Estimation in Room-size Environments”, IEEE International
Conference on Computer Vision (ICCV 01), July, 2001.

[Chen93] Chen S. E. and Williams L., “View Interpolation for Image
Synthesis”, Computer Graphics (SIGGRAPH 93), 279-288, 1993.

[Chen95] Chen S. E, “QuickTime VR - An Image-Based Approach to
Virtual Environment Navigation”, Computer Graphics (SIGGRAPH
95), 29-38, 1995.

[Debevec96] Debevec, P.E., Taylor C.J., and Malik, J., “Modeling and
Rendering Architecture from Photographs”, Computer Graphics
(SIGGRAPH 96), 11-20, 1996.

[Faugeras93] Faugeras O.D, Three-Dimensional Computer Vision: A
Geometric Viewpoint, MIT Press, Cambridge, MA, 1993.

[Faugeras98] Faugeras O.D., Laveau S., Robert L., Czurka G., and Zeller
C., “3D Reconstruction of Urban Scenes from Sequences of Images”,
Computer Vision and Image Understanding, Vol. 69(3), 292-309,
1998.

[Geyer98] C. Geyer and K. Daniliidis, “Catadioptric Camera Calibration”,
IEEE International Conference on Computer Vision (ICCV 98), pp.
398-404, 1998.

[Gortler96] Gortler S., Grzeszczuk R., Szeliski R., and Cohen M., “The
Lumigraph”, Computer Graphics (SIGGRAPH 96), 43-54, 1996.

[Gottschalk96], Gottschalk S., Lin M., and Manocha D., “OBBTree: A
Hierarchical Structure for Rapid Interference Detection”, Computer
Graphics (SIGGRAPH 96), 171-180 (1996).

[Kang96] Kang S.B. and Szeliski R., “3D Scene Data Recovery Using
Omnidirectional Baseline Stereo”, IEEE Computer Vision and Pattern
Recognition (CVPR 96), 364-370, 1996.

[Levoy96] Levoy M. and Hanrahan P., “Light Field Rendering”,
Computer Graphics (SIGGRAPH 96), 31-42, 1996.

[LeGall91] Le Gall D., “MPEG: A Video Compression Standard for
Multimedia Applications”, Communications of the ACM (CACM), Vol.
34(4), 46-58, 1991.

[Max95] Max N. and Ohsaki K., “Rendering Trees from Precomputed Z-
Buffer Views”, Rendering Techniques '95: Proceedings of the 6th
Eurographics Workshop on Rendering, 45-54, 1995.

[McMillan95] McMillan L. and Bishop G., “Plenoptic Modeling: An
Image-Based Rendering System”, Computer Graphics (SIGGRAPH
95), 39-46, 1995.

[Nalwa96] Nalwa V.S., A True Omnidirectional Viewer, Technical
Report, Bell Laboratories, Holmdel, NJ, 1996.

[Nayar97] S. Nayar, “Catadioptric Omnidirectional Camera”, IEEE
Computer Vision and Pattern Recognition (CVPR 97), 482-488, 1997.

[Rademacher98] Rademacher P. and Bishop, G., “Multiple-Center-of-
Projection Images”, Computer Graphics (SIGGRAPH 99), 199-206,
1999.

[Roberts97] Roberts D.R. and Marshall A.D., “A Review of Viewpoint
Planning”, Technical Report 97008, University of Wales, College of
Cardiff, Department of Computer Science, 1997.

[Shi94] Shi J. and Tomasi C., “Good Features to Track”, IEEE Computer
Vision and Pattern Recognition (CVPR 94), 593-600, 1994.

[Shum99] Shum H. and He L., “Rendering with Concentric Mosaics”,
Computer Graphics (SIGGRAPH 99), 299-306, 1999.

[Szeliski96] Szeliski R., “Video mosaics for virtual environments”, IEEE
Computer Graphics and Applications, 22-30, 1996.

[Szeliski97] Szeliski R. and Shum H., “Creating full view panoramic
image mosaics and texture-mapped models”, Computer Graphics
(SIGGRAPH 97), 251-258, 1997.

[Takahasi00] Takahashi T., Kawasaki H., Ikeuchi K., and Sakauchi M.,
“Arbitrary View Position and Direction Rendering for Large-Scale
Scenes”, IEEE Computer Vision and Pattern Recognition (CVPR 00),
296-303, 2000.

[Taylor00] Taylor C., “Video Plus”, IEEE Workshop on Omnidirectional
Vision, 3-10, 2000.

[Tomasi91] Tomasi C. and Kanade T., “Detection and Tracking of Point
Features”, Carnegie Mellon University Technical Report CMU-CS-91-
132, 1991.

[Wallace91] Wallace G., “The JPEG Still Picture Compression Standard”,
Communications of the ACM (CACM), Vol. 34(4), 30-44, 1991.

[Ward92] Ward M., Azuma R., Bennett R., Gottschalk S., and Fuchs H.,
"A Demonstrated Optical Tracker with Scalable Work Area for Head-
Mounted Display Systems.", ACM Symposium on Interactive 3D
Graphics (I3D 92), 43-52, 1992.

[Yu98] Yu Y. and Malik J., “Recovering photometric properties of
architectural scenes from photographs”, Computer Graphics
(SIGGRAPH 96), 207-218, 1996.

[Ziv77] Ziv J. and Lempel A., “A universal algorithm for sequential data
compression”, IEEE Transactions on Information Theory, IT-23, 337-
343, 1977.

Name Setup
Time
(mins)

Capture
Time
(mins)

No. of
Paths/
Loops

No. of
Images

Total
Paths
(meters)

Raw
Images
(MB)

Raw
Data
Structs
(MB)

Compressed
Images
(MB)

Compressed
Data
Structures
(MB)

Total
Data
(MB)

Prep.
Time
(hours)

Copier Rm 12 8 4/1 498 15 1494 159 55 59 114 1
Lobby 5 20 7/5 1304 41 3912 586 110 217 327 5
Multimedia 5 15 7/5 1025 32 3075 425 112 158 270 5
Showcase 10 25 8/9 1600 49 4676 528 169 196 365 6

Table 1. Environment Statistics.

